
FIX Orchestra: The Full Stop
at the End of FIX

June 2017

John Greenan, CEO Alignment Systems
FIX Orchestra Working Group

http://twitter.com/AlignmentSys
http://blog.alignment-systems.com

http://twitter.com/AlignmentSys
http://blog.alignment-systems.com/

FIX Orchestra Status
 Release Candidate 1 is available

 Application level orchestration
 Usable today to describe message structure, scenarios, actors, and states

 Available on GitHub
 FIX now develops technical standards in a fully open manner

 Release Candidate 2 in progress
 Support for FIXatdl
 Expression language
 ISO 20022 metamodel convergence
 Session layer orchestration
 Interface definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 2

FIX Orchestra History – June 2015

7/14/2017 Copyright (c) FIX Protocol Ltd. 3

FIX Orchestra History
 April 2014 http://blog.alignment-systems.com/2014/04/fidl-fix-interface-definition-

language.html
“There is some testing software out there (such as Greenline, LaSalleTech and others) but it
really exists to automate a manual process without re-engineering. This proposal aims to offer
a way forwards for the FIX Trading Community to allow a low value piece of work to be
automated and removed from the day-to-day work needed.”
 Initial implementation known as FIIDL – FIX Interactive Interface Definition (2013-2014)
 Proprietary, closed-source
 June 2015 New working group, clean-room, fresh start

7/14/2017 Copyright (c) FIX Protocol Ltd. 4

http://blog.alignment-systems.com/2014/04/fidl-fix-interface-definition-language.html

Why Orchestra?

7/14/2017 Copyright (c) FIX Protocol Ltd. 5

How to engage a FIX counterparty without Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 6

What problems are we trying to solve?
 FIX protocol was loosely specified from the start. Plenty of room for interpretation.
 Specifications are usually documented in human readable documents that are exchanged

between counterparties. Humans must interpret the specs and turn them into executables
and configurations.
 Conditionally required fields are explained in text which must be interpreted and converted to code.

 FIX standards tell the universe of possible values.
 Which values of OrdType and TimeInForce are accepted by my counterparty?

 Workflow is often not well documented.
 Under what conditions do I get a Session Level Reject, a Business Message Reject, or an

Execution Report with ExecType=Rejected?
 The same message type may have different contents for different scenarios, e.g. Execution Report

for order accepted versus an execution.
 In short, the information we have is sparse and not directly actionable.

7/14/2017 Copyright (c) FIX Protocol Ltd. 7

What is Orchestra?

7/14/2017 Copyright (c) FIX Protocol Ltd. 8

What is FIX Orchestra and what does it do?
 FIX Orchestra is a standard for exchanging machine-readable rules of engagement.
 FIX remains the protocol on the wire. No changes required to your existing FIX engine

(unless you want to). FIX Orchestra is metadata about a specific implementation of FIX.
 Orchestra is not a product, although FIX Trading Community may kickstart open-source

implementations as examples. Vendors and firms are free to develop proprietary
implementations, so long as they are conformant to the standard.

7/14/2017 Copyright (c) FIX Protocol Ltd. 9

What is FIX Orchestra and what does it do?
Orchestra content, all machine readable

 Message structure by each scenario. Implemented as an extension of FIX Repository.
 Accepted values of enumerations by message scenario
 Workflow: when I send this message type under this condition, what can I expect back?
 How external states affect messages, e.g. market phases, order state, price
 Express a condition such as for a conditionally required field using an expression language

7/14/2017 Copyright (c) FIX Protocol Ltd. 10

What is FIX Orchestra and what does it do?
 Content is a composed of multiple feature categories.

 Application layer structure and behavior – independent of encoding such as tag=value, FIXML, SBE
 Session layer behavior
 Operational: session configuration—identifiers and transport settings

 A firm does not need to implement every feature of FIX Orchestra to gain some benefit.
 Just want to share message definitions and conditional fields? That’s doable
 Want to extend to describe message responses, scenarios, and basic states? That’s doable
 Want to fully model in detail the FIX service? That’s doable

7/14/2017 Copyright (c) FIX Protocol Ltd. 11

What is FIX Orchestra and what does it do?
Orchestra process of engagement

 Counterparties exchange their Orchestra files, either statically or exposed through network
interfaces for discovery.

 Counterparties compare their own file with that of their partner.
 Discover differences and restrictions

 Automatically generate:
 FIX engine configuration
 Application configuration and code
 Test cases and sample messages
 Documentation for those pesky humans

7/14/2017 Copyright (c) FIX Protocol Ltd. 12

How to engage a FIX counterparty with Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 13

Orchestra is an interface definition
 Orchestra defines an interface to service offerings or service endpoints
 You don’t need to modify the internals of your applications
 Almost all existing FIX infrastructure has the provisioning information of FIX connections and

data dictionaries stored in multiple places and multiple formats.
 Orchestra can be used to define the service in one place within version control
 Then simple scripts can be created to read Orchestra files and update configuration files for

various services
 The benefits of Orchestra can be available with minimal investment

7/14/2017 Copyright (c) FIX Protocol Ltd. 14

FIX Orchestra supports innovation
Possible uses and tools

 Generate and run conformance tests
 Capture best practices as an Orchestra file instead of text
 Regulate internal flows within a large organization as well as between counterparties
 Orchestra is a contract for behavior – use it to generate an emulator for testing
 Capture an Orchestra file from FIX logs
 Analyze FIX logs for conformance to specified behavior
 Let’s go further…

 Generate Execution Management, Order Management, Smart Order Routing, Order Matching behavior
based upon exchange of state machine descriptions contained within FIX Orchestra files

7/14/2017 Copyright (c) FIX Protocol Ltd. 15

FIX Orchestra working group
Standard development tasks

 Gather requirements
 Ongoing

 Propose and discuss possible solutions with actual code or mockups
 Ongoing

 Write a specification for the standard
 Release Candidate 1 - available
 Release Candidate 2 – in process

 Develop examples and common utilities
 Promote the standard

7/14/2017 Copyright (c) FIX Protocol Ltd. 16

FIX Orchestra roll-out and adoption
FIX Trading Community tasks
 Standardization

 Working group uses GitHub to collaborate on schema and samples
 Working group proposes standard to Global Technical Committee
 Big bang or roll out in phases? e.g. message structure/FIX Repository 2016 edition, scenarios and

state machines, condition DSL, session layer
 Develop Orchestra files representing existing FIX standards

 Enhancement of FIX Repository
 Best practices by asset class, region, etc. – delegate to various working groups
 Publish in GitHub

 Develop open-source utilities
 File comparison and reporting tools
 Validation against schema

7/14/2017 Copyright (c) FIX Protocol Ltd. 17

FIX Orchestra roll-out and adoption
Firm and vendor tasks
 Develop open-source or proprietary utilities

 Compose Orchestra file from other sources
 Orchestra file editors
 Create or adapt configuration, test and code generators
 Web interface for session configuration – web services or semantic web technologies
 Certification tests

 Exchange files with counterparties
 Pilot program for early adopters

 Give feedback to working group

7/14/2017 Copyright (c) FIX Protocol Ltd. 18

FIX Repository → FIX Orchestra
 Orchestra and Repository 2016 Edition share a common XML schema
 The distinction is usage

 Repository declares message structures
 Orchestra adds workflow and conditional behavior.

 Users may select the set of features they wish to use.
 For this reason we are going to move to the term FIX Orchestra to refer to all

representations of financial messaging protocols

7/14/2017 Copyright (c) FIX Protocol Ltd. 19

Deep Dive into FIX Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 20

Deep dive in FIX Orchestra
Contents
 Common elements

 Abbreviations
 Datatypes with mapping to XML Schema types and General Purpose Datatypes (ISO 11404)
 Categories for documentation
 Sections for documentation
 Code Sets – sharable sets of valid values with underlying datatype
 Fields—sharable in many messages

 For each version of FIX
 Components, including common blocks and repeating groups
 Messages refer to components and fields

 Provenance
 Artifact described by Dublin Core Terms—who, what, when
 Each message element can convey history—when added, changed, deprecated

7/14/2017 Copyright (c) FIX Protocol Ltd. 21

Deep dive in FIX Orchestra
 New: a DSL to specify when conditionally required fields are required or forbidden (Boolean

expression, may reference other fields.)

<fixr:fieldRef id="44" name="Price" presence="conditional">

<fixr:required>

<fixr:when>OrdType in [Limit, StopLimit]</fixr:when>

</fixr:required>

<fixr:forbidden>

<fixr:when>OrdType = Market</fixr:when>

</fixr:forbidded>

</fixr:fieldRef>

Presence values are optional, required, conditional, forbidden, ignored, constant (need not be
transmitted on wire).

7/14/2017 Copyright (c) FIX Protocol Ltd. 22

Deep dive in Orchestra
 New: a code set is now a first-class object and may be shared among several fields.
 A code set has an underlying FIX datatype; may be char, int, string.

<fixr:codeSet name="TimeInForceCodeSet" type="char" default="Day">

<fixr:code value="0" name="Day“/>

<fixr:code value="1" name="GTC“/>

<fixr:code value="2" name="AtTheOpening“/>

<fixr:code value="3" name="IOC“/>

<fixr:code value="4" name="FillOrKill“/>

</fixr:codeSet>

The code set is the “type” of this field.
<fixr:field id="59" name="TimeInForce" type="TimeInForceCodeSet“/>

7/14/2017 Copyright (c) FIX Protocol Ltd. 23

Deep dive in FIX Repository 2016 Edition
 Datatypes section was enhanced to map FIX datatypes to General Purpose Datatypes (ISO

11404) as well as XML Schema types.
 Datatypes are about value space and should be independent of encoding.
 Both FIX and XML sometimes confused value and lexical spaces since they were originally

character-based encodings. But now FIX has binary encodings, so we have to get this right.
 Example: a FIX datatype is Price. Its value space is exact numbers. Therefore, it should not

be considered a subclass of float, as it was in the past.
 General Purpose Datatypes has this covered with Scaled number type with factor and radix=10

parts.
 XML Schema standard confuses value and lexical spaces of numbers. It is says that integer is

derived from decimal!?

7/14/2017 Copyright (c) FIX Protocol Ltd. 24

Deep dive in FIX Orchestra
Contents
 A superset of FIX Repository
 Actors with state variables and state machines
 Adds responses to a message, aside from structure

 Message response (workflow)
 State changes
 State machine transitions
 Each response qualified by “when” condition in DSL

7/14/2017 Copyright (c) FIX Protocol Ltd. 25

Deep dive in FIX Orchestra
Actor example (snippet)

<fixr:actor name="Market">

<!-- fields used as variables, not part of a message -->

<fixr:field id="336" name="TradingSessionID" type="String"/>

<fixr:field id="75" name="TradeDate" type="LocalMktDate"/>

<!– a state machine -->

<fixr:states name="Phase">

<fixr:initial name="Closed">

<fixr:transition name="Reopening" target="Preopen"/>

</fixr:initial>

<fixr:state name="Halted">

<fixr:transition name="Resumed" target="Preopen"/>

</fixr:state>

<fixr:state name="Open">

<fixr:transition name="Closing" target="Preclose"/>

</fixr:state>

7/14/2017 Copyright (c) FIX Protocol Ltd. 26

Deep dive in FIX Orchestra
Responses example – conditional DSL may reference message elements or actor states

<fixr:responses>

<fixr:response name="DKTrade">

<fixr:messageRef name="DKTrade" msgType="8“

context="DontKnowTrade"/>

<!-- validate value in incoming message -->

<fixr:when>^OrdType IN [Market, Limit, Stop]</fixr:when>

</fixr:response>

<fixr:response>

<fixr:messageRef name="BusinessMessageReject" msgType="j"/>

!-- test current state of a state machine -->

<fixr:when>$ApplicationState == DOWN</fixr:when>

</fixr:response>

</fixr:responses>

7/14/2017 Copyright (c) FIX Protocol Ltd. 27

Orchestra Interface Metamodel

7/14/2017 Copyright (c) FIX Protocol Ltd. 28

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 29

We start with the interface definition

<fixi:interfaces xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:fixi="http://fixprotocol.io/2016/fixinterfaces"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://fixprotocol.io/2016/fixinterfaces
../../main/resources/xsd/FixInterfaces.xsd">

<fixi:metadata>
<dcterms:subject>Service offerings and sessions example file</dcterms:subject>
<dcterms:description>Mock-up presentation for concepts</dcterms:description>
<dcterms:date>2017-04-21</dcterms:date>
</fixi:metadata>
<fixi:interface name="Private">

<!-- … details live in here -->

</fixi:interface>
</fixi:interfaces>

Interface Definition – define our service

7/14/2017 Copyright (c) FIX Protocol Ltd. 30

<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!-- one or more service offerings, with local orchestration file or internet address -->
<fixi:service name="orderEntry”
orchestration="https://mydomain.com/orchestra/orderEntry.xml"/>
<!-- the protcol stack -->
<fixi:userInterface name="ATDL" orchestration="https://mydomain.com/orchestra/algo.xml"/>
<fixi:encoding name="TagValue"/>
<fixi:sessionProtocol name="FIXT.1.1" reliability="recoverable"
orchestration="https://mydomain.com/orchestra/session.xml">

<fixi:annotation>
<fixi:documentation langId="en-us">FIX session protocol</fixi:documentation>

</fixi:annotation>
</fixi:sessionProtocol>
<fixi:transport name="TCP"/>
<fixi:sessions/>

</fixi:interface>

Here we can define our stack

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 31

<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!– Service and Protocol Definitions removed -->

<fixi:sessions>
<fixi:session name="XYZ-ABC">

<!-- inherits services and protocols from interface -->
<!-- alternate addresses are supported -->
<fixi:transport address="10.96.1.2:567" use="primary"/>
<fixi:transport address="10.96.2.2:567" use="secondary"/>
<!-- there can be any number of identifiers -->
<fixi:identifier name="SenderCompID">

<fixi:value>XYZ</fixi:value>
</fixi:identifier>
<fixi:identifier name="TargetCompID">

<fixi:value>ABC</fixi:value>
</fixi:identifier>
<!-- tells when session becomes effective so it can be configured in advance -->
<fixi:startTime>2017-05-17T09:30:00Z</fixi:startTime>

</fixi:session>
</fixi:sessions>

</fixi:interface>
</fixi:interfaces>

Now let us define a session

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 32

Now for something completely different a new service
<fixi:interface name="OrderRouting">

<fixi:service name="orderRouting"
orchestration="https://mydomain.com/orchestra/orderRouting.xml"/>
<fixi:encoding name="GPB" messageSchema="file://something.proto">
<fixi:annotation>
<fixi:documentation>Message schema attribute demonstrates
extensibility</fixi:documentation>
</fixi:annotation>
</fixi:encoding>
<fixi:protocol name="TLS" version="1.2" layer="transport">
<fixi:annotation>

<fixi:documentation>Additional protocols may be
added</fixi:documentation>

</fixi:annotation>
</fixi:protocol>
<fixi:sessions>

</fixi:interface>

URI to local file or web resource

7/14/2017 Copyright (c) FIX Protocol Ltd. 33

ISO 20022
Metamodel

SWIFT MX
Metamodel

FIX
Orchestra

Metamodel

Semantic
Requirements

ISO 20022
WG5

Metamodel

ISO 20022
Next

Metamodel

Improvements

New
Requirements

Data point modeling (DPM)? FpML?

Similar concepts
 Need to specify how a message is actually used

 Business rules
 Restrictions
 Extensions

7/14/2017 Copyright (c) FIX Protocol Ltd. 34

ISO 20022
WG5 Model

FIX Orchestra
Scenarios

MX Usage
Guidelines

ISO 20022
Variants

	�� FIX Orchestra: The Full Stop at the End of FIX
	FIX Orchestra Status
	FIX Orchestra History – June 2015
	FIX Orchestra History
	Why Orchestra?
	�How to engage a FIX counterparty without Orchestra
	What problems are we trying to solve?
	What is Orchestra?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	�How to engage a FIX counterparty with Orchestra
	Orchestra is an interface definition
	FIX Orchestra supports innovation
	FIX Orchestra working group
	FIX Orchestra roll-out and adoption
	FIX Orchestra roll-out and adoption
	FIX Repository → FIX Orchestra
	Deep Dive into FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in Orchestra
	Deep dive in FIX Repository 2016 Edition
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Orchestra Interface Metamodel
	Interface Definition
	Interface Definition – define our service
	Interface Definition
	Interface Definition
	Слайд номер 33
	Similar concepts

