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FIX Orchestra Status
 Release Candidate 1 is available

 Application level orchestration
 Usable today to describe message structure, scenarios, actors, and states

 Available on GitHub
 FIX now develops technical standards in a fully open manner

 Release Candidate 2 in progress
 Support for FIXatdl
 Expression language
 ISO 20022 metamodel convergence
 Session layer orchestration
 Interface definition
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FIX Orchestra History – June 2015
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FIX Orchestra History
 April 2014 http://blog.alignment-systems.com/2014/04/fidl-fix-interface-definition-

language.html
“There is some testing software out there (such as Greenline, LaSalleTech and others) but it 
really exists to automate a manual process without re-engineering. This proposal aims to offer 
a way forwards for the FIX Trading Community to allow a low value piece of work to be 
automated and removed from the day-to-day work needed.”
 Initial implementation known as FIIDL – FIX Interactive Interface Definition (2013-2014)
 Proprietary, closed-source
 June 2015 New working group, clean-room, fresh start
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Why Orchestra?
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How to engage a FIX counterparty without Orchestra
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What problems are we trying to solve?
 FIX protocol was loosely specified from the start. Plenty of room for interpretation.
 Specifications are usually documented in human readable documents that are exchanged 

between counterparties. Humans must interpret the specs and turn them into executables 
and configurations.
 Conditionally required fields are explained in text which must be interpreted and converted to code.

 FIX standards tell the universe of possible values.
 Which values of OrdType and TimeInForce are accepted by my counterparty?

 Workflow is often not well documented.
 Under what conditions do I get a Session Level Reject, a Business Message Reject, or an 

Execution Report with ExecType=Rejected?
 The same message type may have different contents for different scenarios, e.g. Execution Report 

for order accepted versus an execution.
 In short, the information we have is sparse and not directly actionable.
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What is Orchestra?
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What is FIX Orchestra and what does it do?
 FIX Orchestra is a standard for exchanging machine-readable rules of engagement.
 FIX remains the protocol on the wire. No changes required to your existing FIX engine 

(unless you want to). FIX Orchestra is metadata about a specific implementation of FIX.
 Orchestra is not a product, although FIX Trading Community may kickstart open-source 

implementations as examples. Vendors and firms are free to develop proprietary 
implementations, so long as they are conformant to the standard.
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What is FIX Orchestra and what does it do?
Orchestra content, all machine readable

 Message structure by each scenario. Implemented as an extension of FIX Repository.
 Accepted values of enumerations by message scenario
 Workflow: when I send this message type under this condition, what can I expect back?
 How external states affect messages, e.g. market phases, order state, price
 Express a condition such as for a conditionally required field using an expression language
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What is FIX Orchestra and what does it do?
 Content is a composed of multiple feature categories.

 Application layer structure and behavior – independent of encoding such as tag=value, FIXML, SBE
 Session layer behavior
 Operational: session configuration—identifiers and transport settings

 A firm does not need to implement every feature of FIX Orchestra to gain some benefit. 
 Just want to share message definitions and conditional fields? That’s doable
 Want to extend to describe message responses, scenarios, and basic states? That’s doable
 Want to fully model in detail the FIX service? That’s doable
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What is FIX Orchestra and what does it do?
Orchestra process of engagement

 Counterparties exchange their Orchestra files, either statically or exposed through network 
interfaces for discovery.

 Counterparties compare their own file with that of their partner.
 Discover differences and restrictions

 Automatically generate:
 FIX engine configuration
 Application configuration and code
 Test cases and sample messages
 Documentation for those pesky humans
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How to engage a FIX counterparty with Orchestra
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Orchestra is an interface definition
 Orchestra defines an interface to service offerings or service endpoints
 You don’t need to modify the internals of your applications
 Almost all existing FIX infrastructure has the provisioning information of FIX connections and 

data dictionaries stored in multiple places and multiple formats.
 Orchestra can be used to define the service in one place within version control
 Then simple scripts can be created to read Orchestra files and update configuration files for 

various services
 The benefits of Orchestra can be available with minimal investment
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FIX Orchestra supports innovation
Possible uses and tools

 Generate and run conformance tests
 Capture best practices as an Orchestra file instead of text
 Regulate internal flows within a large organization as well as between counterparties
 Orchestra is a contract for behavior – use it to generate an emulator for testing
 Capture an Orchestra file from FIX logs
 Analyze FIX logs for conformance to specified behavior
 Let’s go further…

 Generate Execution Management, Order Management, Smart Order Routing, Order Matching  behavior 
based upon exchange of state machine descriptions contained within FIX Orchestra files
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FIX Orchestra working group
Standard development tasks

 Gather requirements
 Ongoing

 Propose and discuss possible solutions with actual code or mockups
 Ongoing

 Write a specification for the standard
 Release Candidate 1 - available
 Release Candidate 2 – in process

 Develop examples and common utilities
 Promote the standard
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FIX Orchestra roll-out and adoption
FIX Trading Community tasks
 Standardization

 Working group uses GitHub to collaborate on schema and samples
 Working group proposes standard to Global Technical Committee
 Big bang or roll out in phases? e.g. message structure/FIX Repository 2016 edition, scenarios and 

state machines, condition DSL, session layer 
 Develop Orchestra files representing existing FIX standards

 Enhancement of FIX Repository
 Best practices by asset class, region, etc. – delegate to various working groups
 Publish in GitHub

 Develop open-source utilities
 File comparison and reporting tools
 Validation against schema
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FIX Orchestra roll-out and adoption
Firm and vendor tasks
 Develop open-source or proprietary utilities

 Compose Orchestra file from other sources
 Orchestra file editors
 Create or adapt configuration, test and code generators
 Web interface for session configuration – web services or semantic web technologies
 Certification tests

 Exchange files with counterparties
 Pilot program for early adopters

 Give feedback to working group
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FIX Repository → FIX Orchestra
 Orchestra and Repository 2016 Edition share a common XML schema
 The distinction is usage

 Repository declares message structures
 Orchestra adds workflow and conditional behavior.

 Users may select the set of features they wish to use.
 For this reason we are going to move to the term FIX Orchestra to refer to all 

representations of financial messaging protocols
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Deep Dive into FIX Orchestra
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Deep dive in FIX Orchestra
Contents
 Common elements

 Abbreviations
 Datatypes with mapping to XML Schema types and General Purpose Datatypes (ISO 11404)
 Categories for documentation
 Sections for documentation
 Code Sets – sharable sets of valid values with underlying datatype
 Fields—sharable in many messages

 For each version of FIX
 Components, including common blocks and repeating groups
 Messages refer to components and fields

 Provenance
 Artifact described by Dublin Core Terms—who, what, when
 Each message element can convey history—when added, changed, deprecated
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Deep dive in FIX Orchestra
 New: a DSL to specify when conditionally required fields are required or forbidden (Boolean 

expression, may reference other fields.)

<fixr:fieldRef id="44" name="Price" presence="conditional">

<fixr:required>

<fixr:when>OrdType in [Limit, StopLimit ]</fixr:when>

</fixr:required>

<fixr:forbidden>

<fixr:when>OrdType = Market</fixr:when>

</fixr:forbidded>

</fixr:fieldRef>

Presence values are optional, required, conditional, forbidden, ignored, constant (need not be 
transmitted on wire).
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Deep dive in Orchestra
 New: a code set is now a first-class object and may be shared among several fields.
 A code set has an underlying FIX datatype; may be char, int, string.

<fixr:codeSet name="TimeInForceCodeSet" type="char" default="Day">

<fixr:code value="0" name="Day“/>

<fixr:code value="1" name="GTC“/>

<fixr:code value="2" name="AtTheOpening“/>

<fixr:code value="3" name="IOC“/>

<fixr:code value="4" name="FillOrKill“/>

</fixr:codeSet>

The code set is the “type” of this field.
<fixr:field id="59" name="TimeInForce" type="TimeInForceCodeSet“/>
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Deep dive in FIX Repository 2016 Edition
 Datatypes section was enhanced to map FIX datatypes to General Purpose Datatypes (ISO 

11404) as well as XML Schema types.
 Datatypes are about value space and should be independent of encoding.
 Both FIX and XML sometimes confused value and lexical spaces since they were originally 

character-based encodings. But now FIX has binary encodings, so we have to get this right.
 Example: a FIX datatype is Price. Its value space is exact numbers. Therefore, it should not 

be considered a subclass of float, as it was in the past.
 General Purpose Datatypes has this covered with Scaled number type with factor and radix=10 

parts.
 XML Schema standard confuses value and lexical spaces of numbers. It is says that integer is 

derived from decimal!? 
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Deep dive in FIX Orchestra
Contents
 A superset of FIX Repository
 Actors with state variables and state machines
 Adds responses to a message, aside from structure

 Message response (workflow)
 State changes
 State machine transitions
 Each response qualified by “when” condition in DSL
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Deep dive in FIX Orchestra
Actor example (snippet)

<fixr:actor name="Market">

<!-- fields used as variables, not part of a message -->

<fixr:field id="336" name="TradingSessionID" type="String"/>

<fixr:field id="75" name="TradeDate" type="LocalMktDate"/>

<!– a state machine -->

<fixr:states name="Phase">

<fixr:initial name="Closed">

<fixr:transition name="Reopening" target="Preopen"/>

</fixr:initial>

<fixr:state name="Halted">

<fixr:transition name="Resumed" target="Preopen"/>

</fixr:state>

<fixr:state name="Open">

<fixr:transition name="Closing" target="Preclose"/>

</fixr:state>
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Deep dive in FIX Orchestra
Responses example – conditional DSL may reference message elements or actor states

<fixr:responses>

<fixr:response name="DKTrade">

<fixr:messageRef name="DKTrade" msgType="8“

context="DontKnowTrade"/>

<!-- validate value in incoming message -->

<fixr:when>^OrdType IN [Market, Limit, Stop]</fixr:when>

</fixr:response>

<fixr:response>

<fixr:messageRef name="BusinessMessageReject" msgType="j"/>

!-- test current state of a state machine -->

<fixr:when>$ApplicationState == DOWN</fixr:when>

</fixr:response>

</fixr:responses>
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Orchestra Interface Metamodel
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Interface Definition
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We start with the interface definition

<fixi:interfaces xmlns:dcterms="http://purl.org/dc/terms/" 
xmlns:fixi="http://fixprotocol.io/2016/fixinterfaces" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://fixprotocol.io/2016/fixinterfaces
../../main/resources/xsd/FixInterfaces.xsd">

<fixi:metadata>
<dcterms:subject>Service offerings and sessions example file</dcterms:subject>
<dcterms:description>Mock-up presentation for concepts</dcterms:description>
<dcterms:date>2017-04-21</dcterms:date>
</fixi:metadata>
<fixi:interface name="Private">

<!-- … details live in here -->

</fixi:interface>
</fixi:interfaces>



Interface Definition – define our service 
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<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!-- one or more service offerings, with local orchestration file or internet address -->
<fixi:service name="orderEntry” 
orchestration="https://mydomain.com/orchestra/orderEntry.xml"/>
<!-- the protcol stack -->
<fixi:userInterface name="ATDL" orchestration="https://mydomain.com/orchestra/algo.xml"/>
<fixi:encoding name="TagValue"/>
<fixi:sessionProtocol name="FIXT.1.1" reliability="recoverable" 
orchestration="https://mydomain.com/orchestra/session.xml">

<fixi:annotation>
<fixi:documentation langId="en-us">FIX session protocol</fixi:documentation>

</fixi:annotation>
</fixi:sessionProtocol>
<fixi:transport name="TCP"/>
<fixi:sessions/>

</fixi:interface>

Here we can define our stack



Interface Definition
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<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!– Service and Protocol Definitions removed -->

<fixi:sessions>
<fixi:session name="XYZ-ABC">

<!-- inherits services and protocols from interface -->
<!-- alternate addresses are supported -->
<fixi:transport address="10.96.1.2:567" use="primary"/>
<fixi:transport address="10.96.2.2:567" use="secondary"/>
<!-- there can be any number of identifiers -->
<fixi:identifier name="SenderCompID">

<fixi:value>XYZ</fixi:value>
</fixi:identifier>
<fixi:identifier name="TargetCompID">

<fixi:value>ABC</fixi:value>
</fixi:identifier>
<!-- tells when session becomes effective so it can be configured in advance -->
<fixi:startTime>2017-05-17T09:30:00Z</fixi:startTime>

</fixi:session>
</fixi:sessions>

</fixi:interface>
</fixi:interfaces>

Now let us define a session



Interface Definition
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Now for something completely different a new service
<fixi:interface name="OrderRouting">

<fixi:service name="orderRouting" 
orchestration="https://mydomain.com/orchestra/orderRouting.xml"/>
<fixi:encoding name="GPB" messageSchema="file://something.proto">
<fixi:annotation>
<fixi:documentation>Message schema attribute demonstrates 
extensibility</fixi:documentation>
</fixi:annotation>
</fixi:encoding>
<fixi:protocol name="TLS" version="1.2" layer="transport">
<fixi:annotation>

<fixi:documentation>Additional protocols may be 
added</fixi:documentation>

</fixi:annotation>
</fixi:protocol>
<fixi:sessions>

</fixi:interface>

URI to local file or web resource
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Similar concepts
 Need to specify how a message is actually used

 Business rules
 Restrictions
 Extensions
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